Finite Groups That Need More Generators than Any Proper Quotient

نویسندگان

  • FRANCESCA DALLA VOLTA
  • ANDREA LUCCHINI
چکیده

A structure theorem is proved for finite groups with the property that, for some integer m with m 1⁄2 2, every proper quotient group can be generated by m elements but the group itself cannot. 1991 Mathematics subject classification (Amer. Math. Soc.): 20D20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanders, Rank and Graphs of Groups

A central principle of this paper is that, for a finitely presented group G, the algebraic properties of its finite index subgroups should be reflected by the geometry of its finite quotients. These quotients can indeed be viewed as geometric objects, in the following way. If we pick a finite set of generators for G, these map to a generating set for any finite quotient and hence endow this quo...

متن کامل

Separable Universal Ii

Gromov constructed uncountably many pairwise non-isomorphic discrete groups with Kazhdan's property (T). We will show that no separable II 1-factor can contain all these groups in its unitary group. In particular, no separable II 1-factor can contain all separable II 1-factors in it. We also show that the full group C *-algebras of some of these groups fail the lifting property. We recall that ...

متن کامل

Symmetric Groups and Quotient Complexity of Boolean Operations

The quotient complexity of a regular language L is the number of left quotients of L, which is the same as the state complexity of L. Suppose that L and L′ are binary regular languages with quotient complexities m and n, and that the transition semigroups of the minimal deterministic automata accepting L and L′ are the symmetric groups Sm and Sn of degrees m and n, respectively. Denote by ◦ any...

متن کامل

A classification of hull operators in archimedean lattice-ordered groups with unit

The category, or class of algebras, in the title is denoted by $bf W$. A hull operator (ho) in $bf W$ is a reflection in the category consisting of $bf W$ objects with only essential embeddings as morphisms. The proper class of all of these is $bf hoW$. The bounded monocoreflection in $bf W$ is denoted $B$. We classify the ho's by their interaction with $B$ as follows. A ``word'' is a function ...

متن کامل

Maximal subsets of pairwise non-commuting elements of some finite p-groups

Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998